What is the difference between Business Intelligence and Data Science?

Opinion| business | | Hugo

In our area of work and as a Business Engineer at Dataiku, people (customers, partners, network, school friends) often ask me: what is the difference between BI and Data Science?

In a previous job, I worked in a Business Intelligence environment. Today, I accompany customers in building their own Data Science Applications for BI purposes. So what’s the difference between these two data centric disciplines?

What is Business Intelligence used for?

The first step to any form of Business Intelligence consists in gathering raw data. Once the data is gathered, data engineers use what is called an ETL (Extract Transform Load) tool to manipulate, transform, and classify the data in a structured database.

These structured databases are frequently called data warehouses or data marts. Typically, data warehouses are supposed to be where business owners and decision makers can access their company data and find data-driven answers to their business problems.

Date Warehouse

Thanks to modern data visualization technologies, business analysts build summaries of the data on visual dashboards, making such and such information accessible to a greater number. This information helps business users analyze past performances and adapt future strategy in light of a specific goal. What does the data say about my latest sales performances and how can I improve them? Is the data revealing increased ROI from my advertising investments? Have we efficiently ventilated our benefits? etc.

Business Intelligence is also essential for enterprise reporting and calculating Key Performance Indicators (KPIs). Whether top level managers use KPIs to help drive company strategy or to deliver results to shareholders, investors, or to the public, Business Intelligence is essential to a company’s success - or to its failure.

When it all comes down to it, classic Business Intelligence provides a global descriptive vision of an enterprise's activity based on past data.

Which use cases for Data Science?

Data Science is a discipline that involves a set of techniques and methodologies to build business applications from various sources of structured or unstructured data. It is a profession that requires technical, mathematical, and business skills.

Previously, we spoke about data storage systems such as data warehouses and data marts. In Data Science, another term for data storage systems is data lake. The data lake’s purpose is to store several sources of information without aggregating operations.

Date Lake

Companies need “data science skills” to obtain knowledge from their data (I’ve purposefully avoided using the term “Big Data” in this sentence because you do not need “Big Data” to practice Data Science). The diversity of the business applications impacted by the use of Data Science is very large.

Here are some examples of use cases (we have already worked on at Dataiku):

  • Marketers work more efficiently on customers loyalty;
  • E-commerce players are able to raise their conversion rates;
  • The supply chain can optimize their stocks and deliver times;
  • Energy providers adapt their production to the predicted demand;
  • Banks and financial actors predict the risks and detect frauds;
  • Insurance companies bid the right offer to the right customer at the right life moment;
  • Telco or similar subscription businesses who want to work on churn prevention;
  • B2C company evaluate customer lifetime value to focus their best efforts;
  • Retailer predict its future sales by analyzing customer's behavior;
  • Large company match an unsatisfied collaborator to a vacant job which will be its dream job;
  • Industries prevent breakdowns before they happen;
  • Sentiment analysis for brands by gathering Facebook and Twitter conversations.

At Dataiku we are pleased to discover more and more use cases and ideas impulsed by our users and customers on a daily basis to use Data Science for customer experiences improvements.

Some of our customers also use Data Science Studio (DSS) to improve their BI and reporting capacities. That allows me to confirm that these two disciplines are complementary and essential for companies who want to focus on business improvements using their data.

What is your point of view? Tell us about your uses of Data Science and Business Intelligence in your company in comments!

Other Content You May Like