5 Lingering Questions in 2018 + 5 Budding Trends to Watch for 2019

Scaling AI Lynn Heidmann

We’re now officially halfway to 2019 (or 2018 is half over, if you’re a glass-half-empty type), and this year was supposed to be the one where all kinds of companies made revolutionary strides in the area of artificial intelligence (AI). But so far, it seems… not much has changed. Why?

The year numbers 2018 and 2019 written in sand on a beach, 2018 being washed away by sea wave

Turns out AI is much easier talked about than executed, and there are still a fair number of open questions that need answering in the minds of many executives and data team leaders. Meanwhile, new trends in AI are rising - companies that aren't paying attention might be left behind before they even get started.

We’ve rounded up five of the top lingering questions for 2018 as well as five upcoming trends to keep an eye on for the year to come in our latest AI Trends ebook.

The Questions

  • What Exactly Is a “Data Project” (or “Data Science Project”) Anyway?
  • Are There Really Several "Tiers" of Data Scientists? (AKA What Kind of Data Scientist Should I Be Hiring?)
  • Why Are So Many Data Scientists Leaving Their Jobs?
  • Will My Company Ever Get To a Place Where We Can Deploy (+ Manage) Many Predictive Models?
  • What Are the Compelling Reasons for Collaboration in Data Science?

Trending Topics

  • AutoML, or AI for AI (+ How It Will Affect the Way Data Teams Work)
  • Data Scientists Aren’t Given the Tools to Be Productive
  • What’s to Come in Open Source
  • AI Could Become Less Open
  • Beware of Immature AI

Ready for answers? Get a copy of the ebook over here.

You May Also Like

How the Dataiku Universal AI Platform Redefines Enterprise AI

Read More

The 3 Pillars for Scaling AI in Enterprises

Read More

Your 2024 Analytics Wrapped: Top Dataiku Features for Analysts

Read More