Infographic: How Does Your Data Science Production Process Compare?

Scaling AI Alivia Smith

Deploying your data science models into production often requires complex processes and resources that can lead to the failure of your data project. How do companies handle this process?

We decided to ask thousands of companies how they handled the production phase of their data projects and launched a global survey a few months back.

Download our survey findings on why going from design to production is hard,  and how companies manage to make it easier today.

We've now analyzed the results intensely and packaged them in a report full of actionable insights to help build or review the design-to-production pipeline. We've identified four profiles corresponding to four ways that companies today have set up their data science production processes. Check them out below- click on the infographic to make it bigger.

infographic-production-survey.jpg

You May Also Like

MIT Says 95% of GenAI Pilots Fail: Here’s How to Beat the Odds

Read More

Introducing Agent Hub: The Workspace for Enterprise Agents

Read More

Agent Sprawl Is the New IT Sprawl, Here's How to Control It

Read More

The Business Case for MCP

Read More